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Abstracf—A general design procedure for quarter-wavelength in-

homogeneous impedance transformers having approximately equal-

ripple performance is presented, based on the simplifying assump-

tions that the relative impedance of two waveguides of slightly dif-

ferent widths is a constant and that tan t?,= ki tan do in the vicinity of

& and 6’o = 90°. The calculation of the design parameters depends on

the fact that the insertion-loss function can be expressed, in closed

form, in terms of the unknown parameters. When this is identified

with the permissible equal-ripple function, a set of simultaneous

equations in the unknown parameters results. The solution of these

equations is approximated by the solution to the corresponding

homogeneous transformer problem. Thus a set of simultaneous linear

equations in the small differences can be obtained which provides an

approximate solution to the problem. An experimental design is de.

scribed and the resulting data are presented.

INTRODUCTION

T

HE GENERAL SYNTHESIS of impedance

transformers consisting of equal-length quarter-

wavelength sections of different impedance levels

has been carried out by Riblet [1] and Seidel [2].

Young [3] has discussed the design problem for one- and

two-section impedance transformers in which the cutoff

frequencies of the transformer sections differ. He has

called such impedance transformers ~’inhomogeneous

transformers. ”

This paper presents a design procedure for in-

homogeneous transformers involving an arbitrary num-

ber of impedance sections, subject to two simplifying

assumptions which will be explained in greater detail

later. This procedure employs the method of un-

determined coefficients used by Collin [4] in his solution

of the homogeneous transformer problem for two-,

three-, and four-section transformers. On the one hand,

the insertion-loss function of an arbitrary inhomogene-

ous transformer can readily be expressed in terms of the

unknown parameters of the transformer by using the

special quasi-symmetric functions~ introduced by Riblet

[1] in his discussion of the homogeneous problem. On

the other hand, because of the nature of one of the ap-

proximations, the insertion-loss function of an arbitrary

inhomogeneous transformer is no longer a polynomial

in a suitable frequency variable. The form of these re-

sponse functions is such, however, that they may be

identified with equal-ripple response functions of this

form, constructed by a method proposed by Riblet [5].

I&Then the coefficients of the unknown function are iden-

tified with those of the desired function, a series of simul-

taneous equations determining the unknown parameters

results.

THE PROBLEM

A typical inhomogeneous waveguide impedance

transformer is shown in Fig. 1, together with a possible

schematic. Each waveguide section is distinguished by

its characteristic impedance Zi and its cutoff wave-

length AC,. This results in the fact that the X,i of the

different sections ~rill, in general, be different functions

of the frequency. Now the overall transfer matrix of the

cascade of transformer sections may be obtained from

the product,

where c, = cos (m&~/2 A~, ), s, = sin (7rX~, /2&i), and An, is

the midband guide wavelength. Although the Z, will be

I
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Fig. 1. Schematic inhomogeneous transformer.
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treated as constant in the final design procedure, this input impedance or insertion-loss functioni of the in-

assumption plays no part in the determination of the homogeneous transformer by replacing Z, by kzZi and

general insertion-loss function of the transformer. 1/Zi by k i,/’Zi wherever they occur in the corresponding

If we define Pi =j~i/ci, then the matrix product be- expression for the homogeneous transformer and then

comes multiplying by the proper factors (ci+ k,zF-112.

Now the problem of finding the input impedance of a

( ‘ “17’(P2,L ‘:’) ~ ~ “

homogeneous transformer in terms of the 2,’s has lbeen
C1. ,.c, . .. c.,

fll/zl solved by Riblet [1 ] with the help of the elementary

symmetric functions of the Zi’s. According to Riblet [1],

“(I%;Z “:) ~ “(*,;Z ‘“:) by

the transfer matrix of an n section transformer is given

(c,, _ ~2e~!2cn-2 + ~4~~4G.–4 + . . . j(ul%c”-1 – u8’s’jc”-3 + . ~ . ) )j(afsc~-s – G-3”S3C”–3+ . . . ) c“ – cTfs%-2 + CJ4”S%7–4+ . . ) ‘

When we then make the approximation that p,= k ,p, where u,’ is constructed by replacing each element oc-

where P = js/c is j sin (7r~~o/2&) /cos (7rX~o/2A~o), with curring in an even-numbered position of the le:~ico-

AOOthe guide wavelength of a reference transformer sec- graphically ordered terms of the rth elementary synl -

tion, the matrix product may be

(

c jklsZ1
Cl,lc . . . cn,/c

)
. .

jkls/Zl c

“(

c jkisZ;

.~k,s/Z, C )

written metric function of the n variables Zt b}- its inverse,

while U.” is obtained by the same substitution on the ele-

ments in the odd-numbered positions. Then the inser-

tion-loss function of the network, when terminated at

(

c jksZ

)

the input with a generator of unity impedance and at. . .

jk,,s/Zn “ the output with a resistance of R, is given by

(1)

[(R -- 1)c7L– (RLT,6 – a,0).T’C’L-2 + (RCT4e– (T,O)S’Cn-’ + ~ . ~ ]’

P,. = 1 + ——
4R

+ [(lb,” – ale)scn-’ – (RCT30– fr,@)S3Cn-3 + .0 ]’

4R

while for the inhomogeneous transformer, we have

~L = ~ + [(R -- l)C” – (R;,’ – ;,”) S’C’-’ + (x;,’ – ;,”)S4C”-’ + . ~ ]’

~R(cz + k12s2) . ~ . (C2 + kn2sz)

+ [(RiIO – ti,e)SCn-l – (~;,” – ti,@)SCn-’ + ..0 ]Z
(2)

411(c2 + k,’S2) . . (C2 + kn’s’)

On the basis of the same approximation,

C,/C = 1/<c2 + k~s~

so that the transfer matrix of the cascade may be written

(C2 + k,’s2)-112 . . . (C’+ kn’s’)-”

“(c )(jklsZ1
Ic

jknsZn
. . .

jL?ls/zl c )jk,,s/Zn C “

Here it should be observed that the determinant of each

of the matrix factors when multiplied by the correspond-

ing radical is unity as required for a lossless network.

It is seen that the foregoing transfer matrix product

reduces to that for a homogeneous transformer if

kl=k’, . . , = k,, = 1. lVIoreover, if we know the input

impedance or insertion-loss function of a homogeneous

transformer in terms of Zl, . . . , Z., we can obtain the

Here the barred 7s differ from the unbarrecl U’S in that

Zi has been replaced by k iZt and 1/2; has been rep] aced

by ki/Zi.

At this point, if we assume that the CT’Sare indepen-

dent of frequency and that (2) is an exact expression for

the permissible insertion-loss function, then the problem

will be solved when we exhibit a function of s and c,

having the form of (2), which is equal-ripple over an

arbitrary frequency range and is normalized to yield the

prescribed insertion loss at zero frequency. Of course,

these assumptions are not exact. For this reason, the

design obtained in this way is said to be “apprOXimElte]~

equal-ripple. ”

For ideal equal-ripple performance, it is re:ldily

argued that the last term in the preceding, expression for

PL is identically zero. To see this, divide numerator and

denominator of the fractions by s’”. Then with u== c/s,
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P.’(u) + (2.-12(0)
PT =14=-u

‘ (k,’ + Cd’)(k,’ + cd’) . . . (k.’ + d)

where P.(Q) is a polynomial in o of degree n, and

Q~_,(u) is a polynomial in o of degree n – 1. Riblet [5]

has pointed out a number of procedures for determining

the optimum equal-ripple response of this form. For it,

P.’(U) + Q.–12(W) = En’(co) ,

where Enz(w) has n double zeros in the pass band. Since

P% and Q*I have real coefficients, they must each have

simple zeros at the double zeros of Enz(u); but Qn–1 (u)

cannot have n simple zeros without vanishing identi-

cally. Thus, as a general consequence of equal-ripple

performance, we require that

R:02~+l – ~ezh+l = O, k= o,... , ?3/2 – 1. (3)

Now En(u) can be expressed as a homogeneous poly-

nomial in s and c divided by s’. That is,

En(u) = EJs, C)/S”,

where

E.(s, c) = yficn – Ym-2s2cn-2 i- -Y.44C”-4 i- ‘ “ “ .

Comparing this with the second term of (2), we see that

y.= (R – 1)/2@?, and that

Rg’be – ~t~ —0 = 2 ~Ry~_zL> k=l, ...,2/2. (4)

Equations (3) and (4) constitute a system of nonlinear

equations in the k’s and Z’s since R and the 7’s are speci-

fied by the design problem. They constitute, in some

sense, a formal solution of the problem.

As will be seen in the example to be considered in the

next section, there are more unknown Z’s and k’s than

there are defining equations. Accordingly, the solution

of an inhomogeneous transformer design problem in

general contains a high degree of indeterminacy. The

additional degrees of freedom may be used to determine

“optimum” equal-ripple designs. For example, a shortest

design might be the objective as Young [3] has sug-

gested with a two-section transformer. For most engi-

neering purposes, however, this ambiguity can be

avoided by assigning a waveguide height to each wave-

guide width since the k’s depend only on the width of

the transformer section under study, while the Z’s in-

volve both the width and height of the transformer sec-

tion. Of course, the selected correspondence must be

consistent with the cross sections of the terminating

waveguides. Moreover, if it is smoothly monotonic, the

error of many of the approximations used will be mini-

mized. In the example developed later, a linear relation-

ship between height and width is employed.

For small values of n, the solution of (3) and (4) can

be determined without great difficulty if it is kept in

mind that an approximate solution is available. If we

assume a smoothly monotonic transformer, the in-

homogeneous solution does not differ too much from the

homogeneous solution. To each impedance value of the

homogeneous solution there corresponds a definite

value of k. Thus (3) and (4) may be converted into con-

ditions on the differences between the Z’s of the homo-

geneous solution and their corresponding k’s and the

exact Z’s and k’s. Because these differences are small,

the resulting conditions are linear in these differences

and the differences may be determined numerically.

Equations (3) and (4) are useful in connection with

the design of homogeneous transformers as well. The

conditions on the impedances of an equal-ripple homo-

geneous transformer are given by (3) and (4) when the

~’s are replaced by the a’s and the y’s are properly con-

structed from the coefficients of the Chebyshev poly-

nomials. For values of n up to 6 at least, an approximate

solution of a homogeneous transformer problem, as pro-

vided by tables calculated by Young [6], can readily be

improved upon by using the method of small differences.

It will be useful, in the numerical example to be con-

sidered later, and possibly helpful here to exhibit explicit

expressions for the u’s and for (3) and (4), when n =3.

Then

cl” = l/zl + l/z2 + l/z3; ale = 21+22+2,

u2° = -22/21 + z3/zl + z3/z2 ; ~2e = zl/z2 + zl/z3

+ z,/z,

(5)

U3° = ZJZIZ3; m3e = zlz3/z2

while

&l” = kl/Z1 + kZ/’ZZ + k3/Z3; &Ie = klZl + kzZz + k3Z3

52° = klk2Z2/’Z1 + k1k3Z3/Z1 17.f= klkzZ1/Z2

+ k,k,Z3/Z,; + k,k3ZJZ3

+ ksk3ZJZ3
(6)

:3° = klk2k3Z2/Z1Z3 53’ = klkzk3ZlZ3/ZZ.

Then (3) and (4) are

kl(R/Z, – ZI) + k,(l?jzz – ZJ + k3(R/Z3 – Z3) = O

RZ,/Z1Z3 – Z1Z3/Z, = O
(7)

k~kJRZJZ, – Z,/ZI) + k1k3(RZ1/Z3 – 23/21)

+ k,k3(RZ,/Z3 – 23/22) = 24i? yl.

For kl = k2 = k3 = 1,these are just the equations for the

homogeneous, three-section transformer. Then the first

two equations are satisfied by ZIZ3 = R and ZJ = R,

while the third equation for suitable ~1 reduces to (23)

as given by Collin [4].

The determination of the required equal-ripple func-

tions involves expressions with denominators containing

factors of the form <k~+(l –k~)x’, if we put cz+s~= 1.

In order that the approximation tan 0;= ki tan 190

hold as well as possible over the range of guide-widths
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for a given frequency band, it is desirable to select

the guide width used in defining 80 as a mean be-

tween the guide widths at the two ends of the trans-

former. Thus k; will vary from values less than one

to values greater than one. Then the roots of

k?+ (1 – k~)xz are partially on the real axis and partially

on the imaginary axis. This complicates the problem of

applying the primitive equal-ripple functions proposed

by Riblet [5] since the k’s are as yet unknown. For this

reason, it is convenient to construct ~1 set of primitive

equal-ripple functions having denominators of the de-

sired form. Consider the angle 8 defined by the equation

~,b _ (L + I)e’” – (L – l)e-’~
.

2~L’ + (1 – L“)x’
(8)

where x = cos + over the range O <~ < ~. By the same

methods used by Riblet [5] it is reaclily argued that ~

increases monotonically from O to r, except possibly for

integral multiples of 2r, as @ increases from O to m for all

real values of L. The primitive equal-ripple function

with the same behavior over the limited range I xl <p< 1

is obtained by replacing x by x/p and renormalizing,

with the result that in

a 500 Me/s frequency band centered at 6.1.75 Gc/s.2 The

determination of the impedance transformation R is the

first problelm. If X,, is then to be the midband guide

wavelength of the ith transformer section,, it is given by

the familiar expression

2xgL’xg,’/(Agy + xo;~), ,(11)

where x~,u and AJ are the guide wavelengths of the ith

transformer section at the upper and lower limits of the

frequency band, respectively. If &is then defined as the

corresponding value of the free-space wavelength, it

will be found that ~, = — 1.9124 for the 1.372-inch W21V&
guide and hi= – 1.9120 forthel.590-inch wa.veguide.Thus

we can use 1.912 inches as the midband wavelength of

all sections of the transformer with negligible error. As

the formula for the characteristic impedance of wave-

guide, we now use the simple rule “height times guide

wavelength, ” for reasons given in the Appendix. Ex-

pressed in symbols,

Z = bh,. ,(12)

In evaluating this expression for the two terminating

waveguides3 at their common midband frequency, it is

{k+ >ilz’ + M’(1 - k’))e’~ - {k - <k’+ P’(1 - k’)}e-’~
eib =

2<k2 + (1 – kz)zz
(9)

where x = ~ cos ~, ~ increases monotonically y from O to found that R = 3.566 if the characteristic im pedants of

r as ~ increases from O to m for all real values of k. Of the smaller waveguide is normalized to unity.

course, k = 1 is a possible value, but this situation causes Now the equal-ripple response is given by

no difficulty in the behavior of ti. The optimum equal-
(R – 1)’ E,(S, 6) 2

ripple functions in the variable c are then constructed PL, =l+
{}

(13)

by evaluating expressions of the form

——— .

4R E,(O, 1)

Moreover, Ei(s, c) is obtained by expression &s(c) in a

Re { 6;8, . @Z . . eio~] . (lo)
form homogeneous in s and c with the help of the iclen-

tity Sz+ Cz= 1, and E3(c) is given by

{

[(kI + <l)eio – (kI – tii)e-’o] . . . [(,43+ <~)e’+ – (k3 – <3)e-i@]
Eg(c) = Re

)
(14)

8V’;12 + (1 – k12)C2V’k,2 + (1 – k,’)c’<ktz + (1 – k~2)C2 “

Here V&= <k,? +1-L’ (1 – knz). When this rnu”ltiplication

is carried out and the real part is evaluated, it is found

that

(k,k,@ + klk’<3 + k,k,dl + dl@V’~)C3/IJ3 – (k,k,dj + k,k#3 + k’k,~i)c/p
E.,(c) = —. (15)

v’kl’ + (1 – kl’)czv’k” + (1 – kf)c’<k,’ + (1 – k32)c2

z This problem arose from a commercial requirement. Un-
doubtedly, better examples can be found to illustrate the lilmital.ions
of the theory.

~ Strictly speaking, (12) is justified only for small changes in cross
EXPERIMENTAL AND NUMERICAT. EXAMPLE section. In the design of an impedance transformer, however? we are

By way of illustration, we undertook the design of a
concerned only with the interaction of the reflections estabhshed at
each step. 1f the steps are all small, then (12) is applicable at each

three-section transformer from a 1.590 by O. 795-inch
step and is thus the formula to be applied to the terminating cross
sections in the design procedure, even though it will not give the

waveguide to a 1.372 by 0.200 inch waveguide to cover overall reflection at a direct junction of these cross sections.
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Thus

R–1

“ = 24R

P2
– . (18)

di.d~.d~
(1 – /.4’)+

klkz<~ + klk#’j + kzk3<i

For values of k not differing too greatly from 1 and

bandwidths less than one octave, or any combination of

these conditions,

did?d~

klkz~~ + klk@ + kzks~i

= 1/3 + : (kl-2 + kz-’ + ks-’ – 3). (19)

Thus the equal-ripple condition for a three-section in-

homogeneous transformer may be written

klk,(RZJZZ – 22/21) + klk,(RZJZs – 23/21)

+ ktk,(RZz/Zs – z,/zz)

= (R – 1)P2
/[

4/3–p’+;

1. (kl-2 + kz-2 + k,-2 – 3) . (20)

This reduces to (23) of Collin [4] for kl = kz = ks = 1 since

his cos 0, = ~3p/2. If the basic frequency variable of the

problem is associated with a guide width in between

1.590 and 1.372 inches, then the coefficient of pz/3 will

be small. Thus this term can be neglected and the k’s

occur only on the left-hand side of the equation. Essen-

tially, we are arguing at this point that the constants on

the right side of (4) are the same as those to be used in

solving the homogeneous transformer problem for the

same R and bandwidth and the guide width used in

defining 00.

Now ki is defined to give an approximate solution to

the equation cot 00= ki cot Oi, where do= 7rX,/2& is the

the electrical length of some mean waveguide and

O;= 7rA,J2Xo~ is the electrical length of the ith trans-

former section. If ki is selected so that cot 190 and ki

cot 19~have the same slope at midband, then it is found

that k; is proportional to X~i–2. To determine the mean

transformer width, we require that the values of k at

the input and output terminals be equidistant from

unity. Then

X,o’
—–1=1–:2,j&2 gw

(21)

where X~o is the guide wavelength of the mean-width

transformer at midband, while X~fi is the midband wave-

length at the narrow end of the transformer and ~~~ is

the midband guide wavelength at the wide end of the

transformer. From (21), we have

For the example under consideration, x-,. = 2.668 and

X,w = 2.393. Then X,.= 2.519, which in turn corresponds

to a waveguide width of 1.468 inches. This then is the

mean transformer width and uniquely defines the basic

frequency variable cot 00.

A solution of (20) requires the values of V. Now

p = I cos 190I at the edges of the design band. It is readily

determined that p =0.110. To solve (7) for the equal-

ripple case as restricted by (20), we avail ourselves of the

fact that both Z and k for a given transformer section

depend only on the width of the waveguide, since some

expression for the height of each transformer section in

terms of its width has already been agreed upon. Thus

k is a function of Z given implicitly by the conditions

already noted. If the characteristic impedances 21, 22

and 23 of the three sections of the transformer are

known to have the approximate values 21’, 22’, and 23’,

we may write

ZI = Z; + dZl

22 = Z; + dZ2

23 = Z; + dZs

and

kl = kj + (dk/dZ) Idzl

kz = kt’ + (dk/dZ) 2dZZ

k3 = k3’ + (dk/dZ) 3dZ~

where k’ is the value of k corresponding to the approxi-

mate value of Z, Z’, and dk/dZ is evaluated at the three
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approximate values of Z. When these are substituted in

(7) and higher powers of the dZ’s are neglected, a set of

simultaneous linear equations in the three a?Z’s result.

These are then readily solved.

For the example considered the Z’s were selected to be

solutions of the homogeneous equal-ripple transformer

forp=O.11 and R=3.566. Then Z1’= 1.175, Z2’=1.888,

and ZS’ = 3.034. W7hen the values of the dZ’s are calcu-

lated, the final solution is Zl= 1.155, Z2=1.818, and

Zz=2.972. To these impedance values correspond wave-

guide widths of 1,384, 1.437, and 1.537 inches and wave-

guide heights of 0.233, 0.379, and 0.649 inch. When the

quarter wavelengths were corrected according to Cohn

[7], the final design shown in Fig. 2 resulted. Here, in

the application of Cohn’s formulas for the change in

length of the quarter-wave sections due to the suscep-

tance of the steps, the susceptance B, due to the change

in height given by the curves on page 309 of reference

[8], was simply placed in parallel with the shunt re-

actance X [8, page 300].

diTrlfk’2!lgo1.372 —

SECTION B-B u

Fig. 2. Three-section transformer, experimental design
(WR-159 to WR-137 by 0.200 height).

It will be seen that the reflection coefficients at the

four steps of the approximate solution are 1.175, 1.607,

1.607, and 1.175, respectively, compared with the cor-

rected values of 1.155, 1.574, 1.635, and 1.120. The

average correction is only about 0.025 so that the effort

of this t}’pe of calculation is warranted only when a low

VSWR is required. For the example considered, the re-

flection coefficient of the entire transformer over the

design band was specified to be less than 0.015. It would

clearly require an elaborate analysis to prove that errors

of 0.025 at each of four steps are negligible under this

condition.

It is useful to derive a formula for i-he maxinlum

VSWR in the pass band of this transformer. At the edge

of the pass band where c =K, E8(P) = f 1. Then by (13)

P.(p) =1+ =U(o, 1)--’.
4R

(23)

Now

E,(O, 1) = [1+ P’(kI-z + k,-’ + k,-3 – 3)]k,k2ka/’p3; (24)

and then

PL(,U) = 1 +
(R – 1)’ ~3 ~

{)4R “ 4k1k,k~ “
(25)

This reduces to the homogeneous case, for p small, if

kl=k2=k3= 1. In our numerical example, klk’ks = 1 by

our choice of the frequency variable. Hence the VSWR

of an inhomogeneous transformer in its pass band will

approximate that of a homogeneous transformer be-

tween the same impedance values if a waveguide width

is used which is a mean of the two terminating wave-

guides. For the case in question, R = 3.566, p = 0.11, and

the approxinlate pass band VSWR is 1.0004.

VALIDITY OF THIJ APPROXIMATIONS

We can put an upper limit on the error in the ap-

proximation cot 190= k, cot 0, by applying it to the

terminating waveguides. This is done in Fig. 3 where

cot 00 k plotted from 4.9 to 8.2 klMc/s and conlpalred

with kn cot 0,, for the narrow terminating waveguide

and with kw cot 0. for the wide terminating vvaveguide.

Over the frequency band which is common to the recc)n-

mended frequency bands of the two waveguide sizes,

the error due to the approximation is somewhat less

than 1 percent. Even over the frequency band which

includes both recommended bands, there is a maximum

error of about 8 percent at the low frequency extreme.

Thus it is felt that this approximation may be used

safely in the design of most inhomogeneous tLYlLIS-

formers.

Somewhat more difficult is the estimation of’ the errors

resulting from the fact that the Z’s are not constant

but vary with frequency according to their guide wave-

length. Strictly speaking, then, (3) and (4) hold cmly

at the midband frequency. This means that the co-

efficients of the insertion-loss function P L in (2) vary

somewhat about their ideal midband values, with the

result that the response is no longer truly equal-ripple.

When these coefficients were evaluated as a function of

frequency, it was found that a certain amount of cc,m-

pensation was present so that the coefficients themsel ves

were less sensitive to frequent y than the itnpedance

values comprising them. This is probably related to the

fact that, in a monotonic solution, the reflection cc}ef -

ficients at each junction vary in the same way with

frequency, while for the first-order solution of a honno-

geneous transformer problem only the ratio of reflection

coefficients is determined by the requirement of eqc al-
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ripple performance. This error is thus probably related

to the change in pass-band VSWR due to the change in

R as a function of frequency.

EXPERIMENTAL CONFIRMATION

Figure 4 gives the measured VSWR of an inhonlo-

geneous transformer which was carefully electroformed

in accordance with the dimensions of Fig. 2. The band-

broadening is unexpected, but more or less consistent

with the deterioration in the pass band of the VSWR

tolerance. This in turn is not surprising in view of the

approximations in the theory and the various experi-

mental errors. However, the VSWR is less than 1.03

over the design band and so falls within our original

design specification. It is interesting to note that the

line-length corrections used gave a frequency response

which was well centered about the design band. It will

be observed also that the data terminate abruptly on

the low-frequency side. This arises from the fact that

we were operating so close to the cutofl frequency of the

narrow waveguide that accurate measurements on the

low-frequency side proved to be too costly.

The writer is indebted to Dr. Leo l“c)ung for the com-

putations, also shown in Fig. 4, which were made on

the basis of a prepublication version of this paper.

Taking a program that he had used in connection with

his earlier interest in the design of inhomogeneous trans-

formers, Young calculated the exact response of the

transformer—using, however, the formula bAd/aA for

the frequency dependence of the characteristic wave-

guide impedance of the transformer sections. Two

salient facts stand out from these calculations. First,

the observed data of Fig. 4 and \“oung’s calculations

agree surprisingly well at the skirts of the transformer

response. Second, at the center of the band, Young’s

calculations show a suggestion of equal-ripple per-

formance over substantially the desired band with a

maximum VSWR less than 1,01, even though the use of

formula bAg/aA could have been expected to introduce

some additional error. Thus one may conclude that the

measured deterioration of the pass-band VSWR to 1.03

is primarily due to experimental error, while the band-

broadening at the skirts is due to errors in the approxi-

mations.

CONCLUSION

.4 general design procedure is presented for wave-

guide transformers which makes allowance for the fact

that each of the transformer sections may have a dif-

ferent cutoff frequency. An experimental model is de-

signed, and its performance is given. It is found that a

slight change in impedance values is all that is required

to compensate for a substantial change in waveguide

width.

AppENDIX

The formula used for waveguide impedance b& is

simply a product of formulas for the impedance change,

for change in height, multiplied by a formula for the

impedance change, for change in width. It is well known

and amply verified by experiment that the VSWR due

to a small change in waveguide height can be accurately

predicted by assuming that the impedance of rectarlgu-

lar waveguide is proportional to its height. It is not so

well known that the VSWR due to small changes in

width can be accurately predicted by assumir~g that the

impedance of rectangular waveguide is proportional to

its guide wavelength.

This latter fact follows from (lc) of h’farcuvitz [8].

If his primed and unprimed notation is replaced by sub-

scripts n and w for narrow and wide waveguides,

this equation may be written,

but ~= 1 –cY= 1 –a~/am, where a~/a~ = 1. Thus

= 2 –an/a,. =aw/an. So that finally

z./zw = Aqn/AQm.

hen

-i-p

Thus the impedance change is proportional to the guide

wavelength.

To test the composite formula bAg for waveguide i m-

pedance, two experimental transitions were measured.

In the first, the input waveguide was 0.’300 by 0.400

inch while the output waveguide was 0.843 by 0.2!86

inch. In the second, the input waveguide was 0.900 by

0.200 inch while the output waveguide was 0.970 by

0.348 inch. In both experiments, the measured VSWR

agreed with the calculated VSWR within the experi-

mental error over the frequent y band 8.2 to 12.4 Gc,I’s.
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