IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

A General Design Procedure for

VOL. MTT-13, NO. 5 SEPTEMBER, 1965

Quarter-Wavelength

Inhomogeneous Impedance Transformers Having

Approximately Equal-Ripple Performance

HENRY J. RIBLET, FELLOW, IEEE

Abstract—A general design procedure for quarter-wavelength in-
homogeneous impedance transformers having approximately equal-
ripple performance is presented, based on the simplifying assump-
tions that the relative impedance of two waveguides of slightly dif-
ferent widths is a constant and that tan 6, = &; tan 6, in the vicinity of
8, and 6, =90°. The calculation of the design parameters depends on
the fact that the insertion-loss function can be expressed, in closed
form, in terms of the unknown parameters. When this is identified
with the permissible equal-ripple function, a set of simultaneous
equations in the unknown parameters results. The solution of these
equations is approximated by the solution to the corresponding
homogeneous transformer problem. Thus a set of simultaneous linear
equations in the small differences can be obtained which provides an
approximate solution to the problem. An experimental design is de-
scribed and the resulting data are presented.

INTRODUCTION

HE GENERAL SYNTHESIS of impedance
Ttransformers consisting of equal-length quarter-

wavelength sections of different impedance levels
has been carried out by Riblet [1] and Seidel [2].
Young [3] has discussed the design problem for one- and
two-section impedance transformers in which the cutoff
frequencies of the transformer sections differ. He has
called such impedance transformers “inhomogeneous
transformers.”

This paper presents a design procedure for in-
homogeneous transformers involving an arbitrary num-
ber of impedance sections, subject to two simplifying
assumptions which will be explained in greater detail
later. This procedure employs the method of un-
determined coefficients used by Collin [4] in his solution
of the homogeneous transformer problem for two-,
three-, and four-section transformers. On the one hand,
the insertion-loss function of an arbitrary inhomogene-
ous transformer can readily be expressed in terms of the
unknown parameters of the transformer by using the
special quasi-symmetric functions! introduced by Riblet
[1] in his discussion of the homogeneous problem. On
the other hand, because of the nature of one of the ap-
proximations, the insertion-loss function of an arbitrary
inhomogeneous transformer is no longer a polynomial
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L These functions are defined on page 40 of reference [1]. They are
used in connection with this problem and also provide a practical
numerical method for solving the homogeneous problem in special
cases.
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in a suitable frequency variable. The form of these re-
sponse functions is such, however, that they may be
identified with equal-ripple response functions of this
form, constructed by a method proposed by Riblet [5].
When the coefhcients of the unknown function are iden-
tified with those of the desired function, a series of simul-
taneous equations determining the unknown parameters
results.

THE PROBLEM

A typical inhomogeneous waveguide impedance
transformer is shown in Fig. 1, together with a possible
schematic. Each waveguide section is distinguished by
its characteristic impedance Z; and its cutoff wave-
length A, This results in the fact that the A,; of the
different sections will, in general, be different functions
of the frequency. Now the overall transfer matrix of the
cascade of transformer sections may be obtained from
the product,

{Cl jleﬂ Co ]'S2Zﬂ| [CL jSzZ7]

js1 |- |js2 [ LS |

L— 1t | \— 2 l— ¢, |

Z1 J 2 ) Z; )
’(Cn jan,J!
‘,& ¢, ’)
z

where ¢,=cos (7TX,:;/2\,.), s.=sin (wh,,/2N,:), and X, is
the midband guide wavelength. Although the Z, will be

Fig. 1.

Schematic inhomogeneous transformer.
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treated as constant in the final design procedure, this
assumption plays no part in the determination of the
general insertion-loss {unction of the transformer.

If we define p,=7js;/¢c;, then the matrix product be-
comes

G 7 G )
CL € v iy i . B
P1/21 1 VA 1

< 1 p,LZz> < 1 Pusn
P%/Zz 1 pn/Zn 1 >.

<Cn — 0’28520”_2 —~+ 0'48346”74 + P

]'((7'1036"“3 _ 0’30536"*8 + N )

When we then make the approximation that p,=£k,p,
where p=js/c is j sin (whp/2Np0)/co5 (wX,/2N,), with
e the guide wavelength of a reference transformer sec-
tion, the matrix product may be written

< C jk1321>
efc e enlel -
Jkis/Z ¢

< C jkiSZZ) < c
ik.s/Z, c JkuS/Zn

jksZ>
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input impedance or insertion-loss function of the in-
homogeneous transformer by replacing Z, by k.Z; and
1/Z; by k;/Z; wherever they occur in the corresponding
expression for the homogeneous transformer and then
multiplying by the proper factors (¢2+ k& 2s2)—1/2,

Now the problem of finding the input impedance of a
homogeneous transformer in terms of the Z,’s has been
solved by Riblet [1] with the help of the elementary
symmetric functions of the Z,’s. According to Riblet [1],
the transfer matrix of an # section transformer is given

by

j(O’leSanl — Uaesiicn—«'i + .. ) >
’

cro— 0'20525”_2 + 0’4054(}"_4 + .., )

where ¢,° is constructed by replacing each element oc-
curring in an even-numbered position of the lexico-
graphically ordered terms of the rth elementary sym-
metric function of the » wvariables Z; by its inverse,
while ¢,° is obtained by the same substitution on the ele-
ments in the odd-numbered positions. Then the inser-
tion-loss function of the network, when terminated at
the input with a generator of unity impedance and at
the output with a resistance of R, is given by

[(R _ 1)Cn — (Rop — 0.20)8267L—2 + <R0.4e _ 04")546"_4 4+ .. ]2

Pr=1+

PL:1+[

4R
[(Ror — 019)sc™ — (Rog® — o595+ - - - ]2 , o
4R
while for the inhomogeneous transformer, we have
(R — 1) — (RGy® — d)s%m 2 + (RG4® — a)s*c4+ - - - ]2
AR(CE + kis?) - - - (& 4 kois?)
[(R3)® — a1)scm — (RGw — G5%)sc" 0 + + - - |2 o

AR(c®* + ki3s%) - -

On the basis of the same approximation,
c./c = 1/4/c + k2,
so that the transfer matrix of the cascade may be written

(CQ _'_ k1232)—1/2 . <62 + kn232)~—1/2

< ¢ jklle> ‘( c jknsZn>
jkis/Zy ¢ Ghus) Zn c /

Here it should be observed that the determinant of each
of the matrix factors when multiplied by the correspond-
ing radical is unity as required for a lossless network.

It is seen that the foregoing transfer matrix product
reduces to that for a homogeneous transformer if
Bi=ky - - - ,=k,=1. Moreover, if we know the input
impedance or insertion-loss function of a homogeneous
transformer in terms of Z;, - - -, Z,, we can obtain the

. (62 _l’_ kn252)

Here the barred ¢'s differ from the unbarred ¢'s in that
Z i has been replaced by k;Z, and 1/Z; has been replaced
by kl/Zl

At this point, if we assume that the ¢’s are indepen-
dent of frequency and that (2) is an exact expression for
the permissible insertion-loss function, then the problem
will be solved when we exhibit a function of s and ¢,
having the form of (2), which is equal-ripple over an
arbitrary frequency range and is normalized to yield the
prescribed insertion loss at zero frequency. Of course,
these assumptions are not exact. For this reason, the
design obtained in this way is said to be “approximately
equal-ripple.”

For ideal equal-ripple performance, it is readily
argued that the last term in the preceding expression for
P isidentically zero. To see this, divide numerator and
denominator of the fractions by s*. Then with w=¢/s,
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Pn2("~’) + Qn—lz(“’) Y
(B2 + o) (B2 + &) - - - (B + ?)

Pr=1+

where P,(w) is a polynomial in w of degree #, and
Qn_1(w) is a polynomial in w of degree n—1. Riblet [5]
has pointed out a number of procedures for determining
the optimum equal-ripple response of this form. For it,

P2 (@) + 0nt’(w) = Ed*(w),

where E,?(w) has # double zeros in the pass band. Since
P, and Q.1 have real coefficients, they must each have
simple zeros at the double zeros of E,*(w); but Q,_i1(w)
cannot have 7 simple zeros without vanishing identi-
cally. Thus, as a general consequence of equal-ripple
performance, we require that

Ro%1 — %y = 0, k=0,---,02/2—-1. (3)
Now E.(w) can be expressed as a homogeneous poly-

nomial in s and ¢ divided by s». That is,

En(w) = Eals, 0)/s",

where
E, (s, ¢) = vnt® — Vo822 + y_astt A - - -

Comparing this with the second term of (2), we see that
Yn={(R—1)/2+/R, and that

R&le - 5’2k0 = ZVEYn_Qk, k= 1, Ty, 71/2. (4)
Equations (3) and (4) constitute a system of nonlinear
equations in the £’s and Z’s since R and the v's are speci-
fied by the design problem. They constitute, in some
sense, a formal solution of the problem.

As will be seen in the example to be considered in the
next section, there are more unknown Z’s and %’s than
there are defining equations. Accordingly, the solution
of an inhomogeneous transformer design problem in
general contains a high degree of indeterminancy. The
additional degrees of freedom may be used to determine
“optimum” equal-ripple designs. For example, a shortest
design might be the objective as Young [3] has sug-
gested with a two-section transformer. For most engi-
neering purposes, however, this ambiguity can be
avoided by assigning a waveguide height to each wave-
guide width since the %’'s depend only on the width of
the transformer section under study, while the Z’s in-
volve both the width and height of the transformer sec-
tion. Of course, the selected correspondence must be
consistent with the cross sections of the terminating
waveguides. Moreover, if it is smoothly monotonic, the
error of many of the approximations used will be mini-
mized. In the example developed later, a linear relation-
ship between height and width is employed.

For small values of #, the solution of (3) and (4) can
be determined without great difficulty if it is kept in
mind that an approximate solution is available. If we
assume a smoothly monotonic transformer, the in-
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homogeneous solution does not differ too much from the
homogeneous solution. To each impedance value of the
homogeneous solution there corresponds a definite
value of k. Thus (3) and (4) may be converted into con-
ditions on the differences between the Z’s of the homo-
geneous solution and their corresponding k’s and the
exact Z’s and k’s. Because these differences are small,
the resulting conditions are linear in these differences
and the differences may be determined numerically.

Equations (3) and (4) are useful in connection with
the design of homogeneous transformers as well. The
conditions on the impedances of an equal-ripple homo-
geneous transformer are given by (3) and (4) when the
¢'s are replaced by the ¢'s and the v’s are properly con-
structed from the coefficients of the Chebyshev poly-
nomials. For values of # up to 6 at least, an approximate
solution of a homogeneous transformer problem, as pro-
vided by tables calculated by Young [6], can readily be
improved upon by using the method of small differences.

I't will be useful, in the numerical example to be con-
sidered later, and possibly helpful here to exhibit explicit
expressions for the ¢’s and for (3) and (4), when #=3.
Then

g1° = 1/21 + 1/Z2 + 1//Z3;
0 = Lo/ 71+ 23/ 71+ Z3/7s;

o =721+ 27+ 7Z;
oo = Z1/Zs+ Z1/Z;
+ Zs/Zs
a3® = Zy/7Z1Z3; o3t = Z1Z3/ 7,

while
61° = ki/Zy+ ko/Zo+ k3/ 755 G1° = kiZy + RaZy + k37

5 = kikoZo/Z1 + kiksZs/ Zy
+ koksZs/ Zs,

6o° = kikaZ1/Zs
+ kiksZi/Zs
+ koksZo/ Zs
03° = kikoksZ1Zs/ Zo.

(6)
g’ = k1k2k322/zlz3
Then (3) and (4) are
k1<R/Zl - Zl) + kz(R/Zg h Zz) + kg(R/Zg - Z3) - O
RZz/leg it Z1Z3/Zz = 0

kiko(RZ1/Zy — Zo/Z1) + kiks(RZ1/Zy — Z3/Z1)
+ kzkg(RZ2/Zg - Zg/Zz) = 2\/? Yi-

()

For ki=ks=Fk;=1, these are just the equations for the
homogeneous, three-section transformer. Then the first
two equations are satisfied by Z:Z;=R and ZS=R,
while the third equation for suitable v; reduces to (23)
as given by Collin [4].

The determination of the required equal-ripple func-
tions involves expressions with denominators containing
factors of the form /224 (1 —k2)x?, if we put 2 +s*=1.
In order that the approximation tan 6;=Fk; tan 6
hold as well as possible over the range of guide-widths
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for a given frequency band, it is desirable to select
the guide width used in defining 6, as a mean be-
tween the guide widths at the two ends of the trans-
former. Thus k; will vary from values less than one
to values greater than one. Then the roots of
k24 (1 —kH«x?are partially on the real axis and partially
on the imaginary axis. This complicates the problem of
applying the primitive equal-ripple functions proposed
by Riblet [5] since the %’s are as yet unknown. For this
reason, it is convenient to construct a set of primitive
equal-ripple functions having denominators of the de-
sired form. Consider the angle § defined by the equation

(L + e — (L — 1)e ¢

WL F (1 = LYa?

where x =cos ¢ over the range 0 <¢ <. By the same
methods used by Riblet [5] it is readily argued that &
increases monotonically from 0 to w, except possibly for
integral multiples of 27, as ¢ increases from 0 to 7 for all
real values of L. The primitive equal-ripple function
with the same behavior over the limited range l x] <w<l1
is obtained by replacing x by x/u and renormalizing,
with the result that in

ezé

(8)
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a 500 Mc/s frequency band centered at 6.175 Ge/s.2 The
determination of the impedance transformation R is the
first problem. If X,, is then to be the midband guide
wavelength of the sth transformer section, it is given by
the familiar expression

2>\gzu}\g1l/(}\giu + Aail%

where A,,* and N,;! are the guide wavelengths of the ¢th
transformer section at the upper and lower limits of the
frequency band, respectively. If A;is then defined as the
corresponding value of the free-space wavelength, it
will be found that X, =—1.9124 {or the 1.372-inch wave-
guideand N\;= —1.9120for thel.590-inch waveguide. Thus
we can use 1.912 inches as the midband wavelength of
all sections of the transformer with negligible error. As
the formula for the characteristic impedance of wave-
guide, we now use the simple rule “height times guide
wavelength,” for reasons given in the Appendix. Ex-
pressed in symbols,

(11)

Z = b\, (12)

In evaluating this expression for the two terminating
waveguides® at their common midband frequency, it is

b+ VBT R = e — {k — VB T 20 = F)}e

et =

where x=u cos ¢, 8 increases monotonically from 0 to
7 as ¢ increases from 0 to « for all real values of £. Of
course, k=1 is a possible value, but this situation causes
no difficulty in the behavior of §. The optimum equal-
ripple functions in the variable ¢ are then constructed
by evaluating expressions of the form

Re {eit1-git: . . . gita),

(10)

2WEE + (1 — k)t

9)

[(kr 4 VD)e — (ky — v/1)e ] - -

found that R=3.566 if the characteristic impedance of
the smaller waveguide is normalized to unity.
Now the equal-ripple response is given by

(R — 1)? {Ea(s, ¢) }2'

Py=1+
¢ 4R \E(0, 1)

(13)

Moreover, E;(s, ¢) is obtained by expression &;(¢) in a
form homogeneous in s and ¢ with the help of the iden-
tity s24-¢*=1, and E;(¢) is given by

(14)

E;(c) = Re {

(kiks/2 + kikan/3 + kakov/1 + VIV2V3)e3 /03 — (Riksn/2 + kikan/3 + koksnv/1)c/p .

(ks + V3 — (ks — v3>e-f¢]}

8vEE + (I — ED)VE: + (L — E2)VES + (I — k)

Here v/n= Ve pr(1—Ek,2). When this multiplication
is carried out and the real part is evaluated, it is found
that

(15)

E,g(C) =

EXPERIMENTAL AND NUMERICAL EXAMPLE

By way of illustration, we undertook the design of a
three-section transformer from a 1.590 by 0.795-inch
waveguide to a 1.372 by 0.200 inch waveguide to cover

VEE T (L= kDEVEE + (I — k)EVEE + (1 — k)

? This problem arose from a commercial requirement. Un-
doubtedly, better examples can be found to illustrate the limitations
of the theory.

3 Strictly speaking, (12) is justified only for small changes in cross
section. In the design of an impedance transformer, however, we are
concerned only with the interaction of the reflections established at
each step. If the steps are all small, then (12) is applicable at each
step and is thus the formula to be applied to the terminating cross
sections in the design procedure, even though it will not give the
overall reflection at a direct junction of these cross sections.
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Of course,
B (ka2 + kiko/3 + boksv/T + VIV2V3) = (kiksv/2 + Take/3 + kakay/Dis? 16
3 = 3 .
7
Then,
2 (]31732\/3 + klkg\/E -+ kzks\/I)IﬁS%
Eys,0) Eka/3 + ka2 + kakan/L 4 VIN283B — (Bikan/3 + kikan/2 + kakay/ Dt i~
Ey(0,1) VIS F VRS + AVt ¢
Thus that k; is proportional to A, % To determine the mean
R—1 transformer width, we require that the values of % at
v = __ the input and output terminals be equidistant from
2VR unity. Then
u? .2 %2
R (18) ® =122, (21)
1:4/2:4/3 5 2 T 2
(1= ) + VIVEY Ror Ao

kiko/3 + Eiks/2 A Rokan/1

For values of %k not differing too greatly from 1 and
bandwidths less than one octave, or any combination of
these conditions,

V14/24/3
kikov/3 + kikan/2 + koks/1

2
~1/3 4 % (B + ks k2 — 3). (19)

Thus the equal-ripple condition for a three-section in-
homogeneous transformer may be written

kiko(RZ1 /7o — Z2/Z1) + kiks(RZ/Zs — Z3/Z4)
+ k2k3(RZZ/Zs - Z3/Z2)

2

=(R—1)#2/[4/3*#2+%

N TR Sy v 3)]. (20)

This reduces to (23) of Collin [4] for ky=Fk;=Fk;=1 since
his cos .= +/3u,/2. If the basic frequency variable of the
problem is associated with a guide width in between
1.590 and 1.372 inches, then the coefficient of u*/3 will
be small. Thus this term can be neglected and the k's
occur only on the left-hand side of the equation. Essen-
tially, we are arguing at this point that the constants on
the right side of (4) are the same as those to be used in
solving the homogeneous transformer problem for the
same R and bandwidth and the guide width used in
defining 6.

Now k; is defined to give an approximate solution to
the equation cot 8y=Fk; cot ;, where 8o=mX,/2\, is the
the electrical length of some mean waveguide and
0:=mNyi/2N,; is the electrical length of the 7th trans-
former section. If %, is selected so that cot 8y and k;
cot 0; have the same slope at midband, then it is found

where A, is the guide wavelength of the mean-width
transformer at midband, while X, is the midband wave-
length at the narrow end of the transformer and X, is
the midband guide wavelength at the wide end of the
transformer. From (21), we have

}-\ga2 = 27'\;”;2'ngg/(y‘gn2 + ng2)- (22)
For the example under consideration, A=, =2.668 and
Xow=2.393. Then X, =2.519, which in turn corresponds
to a waveguide width of 1.468 inches. This then is the
mean transformer width and uniquely defines the basic
frequency variable cot 0.

A solution of (20) requires the values of u. Now
p=|cos o] at the edges of the design band. It is readily
determined that u=0.110. To solve (7) for the equal-
ripple case as restricted by (20), we avail ourselves of the
fact that both Z and k& for a given transformer section
depend only on the width of the waveguide, since some
expression for the height of each transformer section in
terms of its width has already been agreed upon. Thus
k is a function of Z given implicitly by the conditions
already noted. If the characterisitic impedances Z1, Z»
and Z; of the three sections of the transformer are
known to have the approximate values Z,’, Z¢/, and Zy/,
we may write

Z1= le ‘f‘ dZ1
Zy = Zzl +dzZ,
Z3 = Zsl + dZa

and
ky =k 4 (dk/dZ2)1dZ,
by = ks + (dk/dZ)sdZs
ks = ki + (dk/dZ)sd 2,

where %' is the value of k corresponding to the approxi-
mate value of Z, Z’, and dk/dZ is evaluated at the three
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approximate values of Z. When these are substituted in
(7) and higher powers of the dZ’s are neglected, a set of
simultaneous linear equations in the three dZ’s result.
These are then readily solved.

For the example considered the Z’s were selected to be
solutions of the homogeneous equal-ripple transformer
for u=0.11 and R=3.566. Then Z,/=1.175, Z, =1.888,
and Z;' =3.034. When the values of the dZ’s are calcu-
lated, the final solution is Z;=1.155, Z;=1.818, and
Z3=2.972. To these impedance values correspond wave-
guide widths of 1.384, 1.437, and 1.537 inches and wave-
guide heights of 0.233, 0.379, and 0.649 inch. When the
quarter wavelengths were corrected according to Cohn
[7], the final design shown in Fig. 2 resulted. Here, in
the application of Cohn’s formulas for the change in
length of the quarter-wave sections due to the suscep-
tance of the steps, the susceptance B, due to the change
in height given by the curves on page 309 of reference
[8], was simply placed in parallel with the shunt re-
actance X [8, page 300].

B 1 .
sz 2—1* ? I.j84 lj37 I.SLG 1.590
I

7]

1|

SECTION A-A

r———-z.sm —
—» 605 [+—
—» 604 [+—
—» 638 j+—

||
.233 379 .649 795

\;T: i ¥

A u_/j /%4‘

SECTION B-B

Fig. 2. Three-section transformer, experimental design

(WR-159 to WR-137 by 0.200 height).

It will be seen that the reflection coefficients at the
four steps of the approximate solution are 1.175, 1.607,
1.607, and 1.175, respectively, compared with the cor-
rected values of 1.155, 1.574, 1.635, and 1.120. The
average correction is only about 0.025 so that the effort
of this type of calculation is warranted only when a low
VSWR is required. For the example considered, the re-
flection coefficient of the entire transformer over the
design band was specified to be less than 0.015. I't would
clearly require an elaborate analysis to prove that errors
of 0.025 at each of four steps are negligible under this
condition.
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It is useful to derive a formula for the maxirmum
VSWR in the pass band of this transformer. At the edge
of the pass band where c=pu, Es(u) = + 1. Then by (13)

(R — 1)

PL(}J.) =1 + —_E—_ E3(0, 1)"2. (23)

Now

E(0,1) = [4+ u2(kr? + ko2 + ki — 3) | bikoks/u®; (24)

and then
(R — 1)2 { #3 } 2
AR dkikoks)

This reduces to the homogeneous case, for u small, if
ki=ky=Fks=1. In our numerical example, kk:ks=1 by
our choice of the frequency variable. Hence the VSWR
of an inhomogeneous transformer in its pass band will
approximate that of a homogeneous transformer be-
tween the same impedance values if a waveguide width
is used which is a mean of the two terminating wave-
guides. For the case in question, R=3.566, 4 =0.11, and
the approximate pass band VSWR is 1.0004.

Prlu) =1+ (25)

VALIDITY OF THE APPROXIMATIONS

We can put an upper limit on the error in the ap-
poroximation cot §y==Fk, cot §, by applying it to the
terminating waveguides. This is done in Fig. 3 where
cot 6, is plotted from 4.9 to 8.2 kMc/s and compared
with &, cot 8, for the narrow terminating waveguide
and with &, cot 8, for the wide terminating waveguide.
Over the frequency band which is common to the recom-
mended frequency bands of the two waveguide sizes,
the error due to the approximation is somewhat less
than 1 percent. Even over the frequency band which
includes both recommended bands, there is a maximum
error of about 8 percent at the low frequency extreme,
Thus it is felt that this approximation may be used
safely in the design of most inhomogeneous trans-
formers.

Somewhat more difficult is the estimation of the errors
resulting from the fact that the Z’s are not constant
but vary with frequency according to their guide wave-
length. Strictly speaking, then, (3) and (4) hold only
at the midband frequency. This means that the co-
efficients of the insertion-loss function P in (2) vary
somewhat about their ideal midband values, with the
result that the response is no longer truly equal-ripple.
When these coefficients were evaluated as a function of
frequency, it was found that a certain amount of com-
pensation was present so that the coefficients themselves
were less sensitive to frequency than the impedance
values comprising them. This is probably related to the
fact that, in a monotonic solution, the reflection coef-
ficlents at each junction vary in the same way with
frequency, while for the first-order solution of a homo-
geneous transformer problem only the ratio of reflection
coefficients is determined by the requirement of equal-



628

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

L2
TOTAL BAND
10 +
Ko COT 6,
8 J—
cot 8, COMMON —————|
4 N
N DESIGN
BAND
2
(]
DO
. oo
(@)
O .2
-4 ™
-6 \\
K, COT 8,
-8 \ Jr _|
-1.0 Nl
-2
5.0 60 7.0 8.0
FREQ.(GC)
Fig. 3. Range of approximation, cot 8, =%, cot 0,.
2.0
ol
|
|
1.8 /
(*) MEASURED
(X) CALCULATED BY L. YOUNG 4
.7 /
1.6
x )5
=
> /
> .
1.4 34
< y
N x
\ /
1.2 \ /X
1.1 * ¢
.0 4.0 4.5 5.0 5.5 Y 7o 7.5 8.0 85 9.0

FREQUENCY (GC)

Fig. 4. Performance of experimental design.

SEPTEMBER



1965

ripple performance. This error is thus probably related
to the change in pass-band VSWR due to the change in
R as a function of frequency.

EXPERIMENTAL CONFIRMATION

Figure 4 gives the measured VSWR of an inhomo-
geneous transformer which was carefully electroformed
in accordance with the dimensions of Fig. 2. The band-
broadening is unexpected, but more or less consistent
with the deterioration in the pass band of the VSWR
tolerance. This in turn is not surprising in view of the
approximations in the theory and the various experi-
mental errors. However, the VSWR is less than 1.03
over the design band and so falls within our original
design specification. It is interesting to note that the
line-length corrections used gave a frequency response
which was well centered about the design band. It will
be observed also that the data terminate abruptly on
the low-frequency side. This arises from the fact that
we were operating so close to the cutoft frequency of the
narrow waveguide that accurate measurements on the
low-frequency side proved to be too costly.

The writer is indebted to Dr. I.eo Young for the com-
putations, also shown in Fig. 4, which were made on
the basis of a prepublication version of this paper.
Taking a program that he had used in connection with
his earlier interest in the design of inhomogeneous trans-
formers, Young calculated the exact response of the
transformer—using, however, the formula b\,/a\ for
the frequency dependence of the characteristic wave-
guide impedance of the transformer sections. Two
salient facts stand out from these calculations. First,
the observed data of Fig. 4 and Young’s calculations
agree surprisingly well at the skirts of the transformer
response. Second, at the center of the band, Young's
calculations show a suggestion of equal-ripple per-
formance over substantially the desired band with a
maximum VSWR less than 1.01, even though the use of
formula bA,/ak could have been expected to introduce
some additional error. Thus one may conclude that the
measured deterioration of the pass-band VSWR to 1.03
is primarily due to experimental error, while the band-
broadening at the skirts is due to errors in the approxi-
mations.

CONCLUSION

A general design procedure is presented for wave-
guide transformers which makes allowance for the fact
that each of the transformer sections may have a dif-
ferent cutoff frequency. An experimental model is de-
signed, and its performance is given. It is found that a
slight change in impedance values is all that is required
to compensate for a substantial change in waveguide
width.
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APPENDIX

The formula used for waveguide impedance bA, is
simply a product of formulas for the impedance change,
for change in height, multiplied by a formula for the
impedance change, for change in width. It is well known
and amply verified by experiment that the VSWR due
to a small change in waveguide height can be accurately
predicted by assuming that the impedance of rectangu-
lar waveguide is proportional to its height. It is not so
well known that the VSWR due to small changes in
width can be accurately predicted by assuming that the
impedance of rectangular waveguide is proportional to
its guide wavelength.

This latter fact follows from (1c) of Marcuvitz [8].
If his primed and unprimed notation is replaced by sub-
scripts # and w for narrow and wide waveguides, then
this equation may be written,

Za AgnGn

~

Zw Agwaw

but B=1—a=1—a,/a,, where a,/a,~1. Thus 148
=2—a,/0, ~a,/a,. So that finally

Z0/Zw = Agn/Ngo-

148 for 8K 1;

Thus the impedance change is proportional to the guide
wavelength.

To test the composite formula b\, for waveguide im-
pedance, two experimental transitions were measured.
In the first, the input waveguide was 0.900 by 0.400
inch while the output waveguide was 0.843 by 0.286
inch. In the second, the input waveguide was 0.900 by
0.200 inch while the output waveguide was 0.970 by
0.348 inch. In both experiments, the measured VSWR
agreed with the calculated VSWR within the experi-
mental error over the frequency band 8.2 to 12.4 Ge/'s.
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